论文标题
三个偏斜线上的平滑立方表面上的所有线条
All lines on a smooth cubic surface in terms of three skew lines
论文作者
论文摘要
约旦表明,含有27条线的光滑立方表面的发病率变化在包含3个偏斜线的光滑立方表面的发病率变化上具有可溶解的Galois组。正如哈里斯(Harris)所指出的那样,对于任何平滑的立方表面,就任何3个偏斜线而言,所有27行都存在公式。为了回答Farb的问题,我们明确计算了这些公式。我们还讨论了这些公式如何与Schläfli在真实平滑的立方表面上的线数相关。
Jordan showed that the incidence variety of a smooth cubic surface containing 27 lines has solvable Galois group over the incidence variety of a smooth cubic surface containing 3 skew lines. As noted by Harris, it follows that for any smooth cubic surface, there exist formulas for all 27 lines in terms of any 3 skew lines. In response to a question of Farb, we compute these formulas explicitly. We also discuss how these formulas relate to Schläfli's count of lines on real smooth cubic surfaces.