论文标题
Eclips $Δ$ SCUTI STAR AI HYDRAE的苔丝光度法
TESS Photometry of the Eclipsing $δ$ Scuti Star AI Hydrae
论文作者
论文摘要
AI hya被称为具有单层$δ$ sct脉动器的黯然失色的二进制。我们介绍了在第7区观察到的{\ it Tess}光度法的结果。包括我们的五个最小时代,Eclipse Purting图以$ \dotΩ$ = 0.075 $ \ pm $ 0.031 $ $ 0.031 $ $^$^{ - 1} $的速率显示了apsidal运动,与$ 0.031 v { - 1} $相对应,$ $ $ $ $ $ $ $ $ ppsid $ ussiD us u = 4800000000 00000 00000000000000000000000000000000000000000000000000000000000000000岁。二进制星模型表示,较小,较小的主要组件比脉动次级高427 k,我们的距离为612美元$ \ pm $ 36 PC与$ GAIA $ 644 $ \ pm pm $ 26 PC非常吻合。我们从观察到的{\ it Tess}数据中减去了二进制效应,并将多频分析应用于这些残差。结果表明,AI hya在其脉动中是多重的。在检测到的14个信号中,有4个($ f_1 $,$ f_2 $,$ f_3 $,$ f_6 $)被视为独立的脉动频率。 $ p _ {\ rm pul}/p _ {\ rm orb} $ = 0.012 $ - $ 0.021和$ q $ = 0.30 $ 0.52 $ 0.52天的脉冲常数对应于二进制文件的$δ$ sct脉冲。我们发现,径向基本$ f $模式($ f_2 $和$ f_3 $)和非radial $ g_1 $模式的AI Hya脉动的次要组成部分,低度为$ \ ell $ = 2($ f_1 $和$ f_6 $)。
AI Hya has been known as an eclipsing binary with a monoperiodic $δ$ Sct pulsator. We present the results from its {\it TESS} photometry observed during Sector 7. Including our five minimum epochs, the eclipse timing diagram displays the apsidal motion with a rate of $\dotω$ = 0.075$\pm$0.031 deg year$^{-1}$, which corresponds to an apsidal period of U = 4800$\pm$2000 years. The binary star model represents that the smaller, less massive primary component is 427 K hotter than the pulsating secondary, and our distance of 612$\pm$36 pc is in good agreement with the $Gaia$ distance of 644$\pm$26 pc. We subtracted the binary effects from the observed {\it TESS} data and applied a multifrequency analysis to these residuals. The result reveals that AI Hya is multiperiodic in its pulsation. Of 14 signals detected, four ($f_1$, $f_2$, $f_3$, $f_6$) may be considered independent pulsation frequencies. The period ratios of $P_{\rm pul}/P_{\rm orb}$ = 0.012$-$0.021 and the pulsation constants of $Q$ = 0.30$-$0.52 days correspond to $δ$ Sct pulsations in binaries. We found that the secondary component of AI Hya pulsates in both radial fundamental $F$ modes ($f_2$ and $f_3$) and non-radial $g_1$ modes with a low degree of $\ell$ = 2 ($f_1$ and $f_6$).