论文标题

在变化的边界下随机通风特征值的演变

Evolution of the Stochastic Airy eigenvalues under a changing boundary

论文作者

Gonzalez, Angelica, Holcomb, Diane

论文摘要

最初由Ramírez,Rider和Virág引入的通风$_β$点过程被定义为随机通风的操作员$ \ MATHCAL {H}_β$作用于$ l^2 [0,\ infty)$具有Dirichlet Boundary条件的子空间。在本文中,我们研究了定义为$ \ MATHCAL {H}_β$的特征值的耦合家族,其作用于$ l^2 [t,\ infty)$的子空间。这些点过程是通过$ \ mathcal {h}_β$的布朗术语结合的。我们表明,这些点过程作为$ t $的函数是可以通过显式计算的衍生产品来区分的。此外,当由$ t $延期时,结果点过程是固定的。此过程也可以被视为在三角形环境中对“ Gue Minor过程”的类似物。

The Airy$_β$ point process, originally introduced by Ramírez, Rider, and Virág, is defined as the spectrum of the stochastic Airy operator $\mathcal{H}_β$ acting on a subspace of $L^2[0,\infty)$ with Dirichlet boundary condition. In this paper we study the coupled family of point processes defined as the eigenvalues of $\mathcal{H}_β$ acting on a subspace of $L^2[t,\infty)$. These point processes are coupled through the Brownian term of $\mathcal{H}_β$. We show that these point processes as a function of $t$ are differentiable with explicitly computable derivative. Moreover when recentered by $t$ the resulting point process is stationary. This process can also be viewed as an analogue to the 'GUE minor process' in the tridiagonal setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源