论文标题
打开$ \ mathbb {cp}^1 $ descendent理论i:固定扇区
Open $\mathbb{CP}^1$ descendent theory I: The stationary sector
论文作者
论文摘要
我们在稳定地图的模量空间上定义了固定的后裔积分,从磁盘到$(\ mathbb {cp}^1,\ mathbb {rp}^1)$。我们证明了固定理论的本地化公式,该理论涉及固定点和所有角纹的贡献。我们使用本地化公式来证明递归关系和所有属$ 0 $ $ 0 $ disk覆盖不变的封闭公式。对于所有较高属的不变性,我们提出了一个猜想的公式。
We define stationary descendent integrals on the moduli space of stable maps from disks to $(\mathbb{CP}^1,\mathbb{RP}^1)$. We prove a localization formula for the stationary theory involving contributions from the fixed points and from all the corner-strata. We use the localization formula to prove a recursion relation and a closed formula for all genus $0$ disk cover invariants in the stationary case. For all higher genus invariants, we propose a conjectural formula.