论文标题
隐藏的对称性在周期性折纸中生成刚性折叠机制
Hidden symmetries generate rigid folding mechanisms in periodic origami
论文作者
论文摘要
我们考虑具有通用折痕图案的周期性折纸板的零能量变形。使用从此类床单的线性折叠运动的映射到实力模式,并结合麦克斯韦 - 卡拉丁指数定理,我们得出了线性折叠运动的数量与刚性体模式的数量之间的关系,这仅取决于折纸的人物的平均坐标数。这支持了TACHI的最新结果,Tachi显示了带有三角形面的周期性折纸片,表现出二维可折叠式圆柱形构型的二维空间。我们还通过分析计算和数值模拟发现,由于几何兼容性约束,从平坦的状态分支了该配置空间,从而禁止有限的高斯曲率。相同的计数参数导致三角折纸中相对波数的空间变化模式配对,以防止拓扑极化,但允许在大体中零能量变形的家族,该家族可用于重新配置折纸板。
We consider the zero-energy deformations of periodic origami sheets with generic crease patterns. Using a mapping from the linear folding motions of such sheets to force-bearing modes in conjunction with the Maxwell-Calladine index theorem we derive a relation between the number of linear folding motions and the number of rigid body modes that depends only on the average coordination number of the origami's vertices. This supports the recent result by Tachi which shows periodic origami sheets with triangular faces exhibit two-dimensional spaces of rigidly foldable cylindrical configurations. We also find, through analytical calculation and numerical simulation, branching of this configuration space from the flat state due to geometric compatibility constraints that prohibit finite Gaussian curvature. The same counting argument leads to pairing of spatially varying modes at opposite wavenumber in triangulated origami, preventing topological polarization but permitting a family of zero energy deformations in the bulk that may be used to reconfigure the origami sheet.