论文标题
Lagrangian-Eulerian多密度拓扑优化具有材料点方法
Lagrangian-Eulerian Multi-Density Topology Optimization with the Material Point Method
论文作者
论文摘要
在本文中,提出了一种混合拉格朗日 - 欧拉拓扑优化(LETO)方法,以使用材料点法(MPM)求解弹性力平衡。 Leto将密度信息从自由移动的Lagrangian载体粒子转移到固定的欧拉二次点点。此转移基于合规性目标中涉及的光滑径向内核,以避免人造棋盘格模式。正交点充当嵌入在较低分辨率网格中的MPM颗粒,并启用了复杂结构的子细胞多密度分辨率,计算成本降低。采用了基于正交级别的连接方法,以避免多分辨率拓扑优化方法中通常存在的人造棋盘问题。提供了数值实验来证明所提出方法的功效。
In this paper, a hybrid Lagrangian-Eulerian topology optimization (LETO) method is proposed to solve the elastic force equilibrium with the Material Point Method (MPM). LETO transfers density information from freely movable Lagrangian carrier particles to a fixed set of Eulerian quadrature points. This transfer is based on a smooth radial kernel involved in the compliance objective to avoid the artificial checkerboard pattern. The quadrature points act as MPM particles embedded in a lower-resolution grid and enable a sub-cell multi-density resolution of intricate structures with a reduced computational cost. A quadrature-level connectivity graph-based method is adopted to avoid the artificial checkerboard issues commonly existing in multi-resolution topology optimization methods. Numerical experiments are provided to demonstrate the efficacy of the proposed approach.