论文标题
环球纪念物
Universal quivers
论文作者
论文摘要
我们表明,对于任何积极的整数$ n $,都存在Quiver $ Q $,其中$ O(n^2)$ dertices和$ o(n^2)$边缘,使得$ n $ vertices上的任何颤抖的Quiver都是Quiver突变的完整子,相当于$ Q $。我们将此陈述概括为偏斜矩阵,并获得其他相关的结果。特别是,我们表明,任何箭袋都是箭量突变的完整子征质,等效于颤动的图形。
We show that for any positive integer $n$, there exists a quiver $Q$ with $O(n^2)$ vertices and $O(n^2)$ edges such that any quiver on $n$ vertices is a full subquiver of a quiver mutation equivalent to $Q$. We generalize this statement to skew-symmetrizable matrices and obtain other related results. In particular, we show that any quiver is a full subquiver of a quiver mutation equivalent to a quiver of a plabic graph.