论文标题

安全,最佳,实时轨迹计划,并行约束伯恩斯坦算法

Safe, Optimal, Real-time Trajectory Planning with a Parallel Constrained Bernstein Algorithm

论文作者

Kousik, Shreyas, Zhang, Bohao, Zhao, Pengcheng, Vasudevan, Ram

论文摘要

为了遍及世界,移动机器人通常会使用后退的策略,在该策略中,他们在计算新计划以合并新的传感器信息时执行旧计划。计划应动态可行,这意味着它遵守机器人的动态和避免障碍物的限制;它应该具有可观的能力,这意味着机器人不会太频繁地计划,以至于无法完成任务。它应该是最佳的,这意味着机器人试图满足用户指定的成本功能,例如尽快达到目标位置。基于可及性的轨迹设计(RTD)是一种计划方法,可以生成可证明动态的计划。但是,RTD在每个计划迭代中求解一个非线性的综合优化程序,以防止最佳保证;此外,RTD可能会遇到困难,因为当求解器找到当地的最小值或找不到可行的解决方案时,机器人必须刹车停止。本文提出了RTD*,该RTD*在每个计划迭代中都可以证明发现全球最佳计划(如果存在这样的计划)。这种方法是通过一种新型的并行约束的伯恩斯坦算法(PCBA)来启用的,这是多项式优化的分支结合方法。本文的贡献是:PCBA的实施; PCBA的时间和内存使用情况的界限证明; PCBA与最新求解器的比较;以及移动机器人上的PCBA/RTD*的演示。 RTD*在具有随机障碍的各种环境中的最佳性和实时规划方面优于RTD。

To move through the world, mobile robots typically use a receding-horizon strategy, wherein they execute an old plan while computing a new plan to incorporate new sensor information. A plan should be dynamically feasible, meaning it obeys constraints like the robot's dynamics and obstacle avoidance; it should have liveness, meaning the robot does not stop to plan so frequently that it cannot accomplish tasks; and it should be optimal, meaning that the robot tries to satisfy a user-specified cost function such as reaching a goal location as quickly as possible. Reachability-based Trajectory Design (RTD) is a planning method that can generate provably dynamically-feasible plans. However, RTD solves a nonlinear polynmial optimization program at each planning iteration, preventing optimality guarantees; furthermore, RTD can struggle with liveness because the robot must brake to a stop when the solver finds local minima or cannot find a feasible solution. This paper proposes RTD*, which certifiably finds the globally optimal plan (if such a plan exists) at each planning iteration. This method is enabled by a novel Parallelized Constrained Bernstein Algorithm (PCBA), which is a branch-and-bound method for polynomial optimization. The contributions of this paper are: the implementation of PCBA; proofs of bounds on the time and memory usage of PCBA; a comparison of PCBA to state of the art solvers; and the demonstration of PCBA/RTD* on a mobile robot. RTD* outperforms RTD in terms of optimality and liveness for real-time planning in a variety of environments with randomly-placed obstacles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源