论文标题
但丁:采矿和监视暗网交通的框架
DANTE: A framework for mining and monitoring darknet traffic
论文作者
论文摘要
数万亿个网络数据包通过Internet发送到不存在的目的地。这种“ Darknet”交通捕捉了僵尸网络和其他恶意运动的活动,旨在发现和妥协世界各地的设备。为了从这些数据中挖掘威胁智能,必须能够处理大量日志流并以有意义的方式表示流量模式。但是,通过观察如何使用网络端口(服务),可以捕获每个传输的意图。在本文中,我们介绍了Dante:用于采矿Darknet流量的框架和算法。但丁通过将Word2Vec应用于观察到的端口序列来了解目标网络端口的含义。然后,当主机发送新序列时,但丁表示传输是端口的平均嵌入发现该序列。最后,但丁在观察到的序列上使用一种新颖的和增量的时间序列跟踪算法来检测重复的行为和新的新出现威胁。为了评估该系统,我们在欧洲最大的电信提供商Deutsche Telekom收集的整整一年的Darknet交通(超过三个TERA-BYTE)上运行了Dante,并分析了结果。但丁发现了1,177个新的新兴威胁,并能够随着时间的流逝而追踪恶意运动。我们还将但丁与当前的最佳方法进行了比较,发现但丁在检测黑网交通模式方面更加实用和有效。
Trillions of network packets are sent over the Internet to destinations which do not exist. This 'darknet' traffic captures the activity of botnets and other malicious campaigns aiming to discover and compromise devices around the world. In order to mine threat intelligence from this data, one must be able to handle large streams of logs and represent the traffic patterns in a meaningful way. However, by observing how network ports (services) are used, it is possible to capture the intent of each transmission. In this paper, we present DANTE: a framework and algorithm for mining darknet traffic. DANTE learns the meaning of targeted network ports by applying Word2Vec to observed port sequences. Then, when a host sends a new sequence, DANTE represents the transmission as the average embedding of the ports found that sequence. Finally, DANTE uses a novel and incremental time-series cluster tracking algorithm on observed sequences to detect recurring behaviors and new emerging threats. To evaluate the system, we ran DANTE on a full year of darknet traffic (over three Tera-Bytes) collected by the largest telecommunications provider in Europe, Deutsche Telekom and analyzed the results. DANTE discovered 1,177 new emerging threats and was able to track malicious campaigns over time. We also compared DANTE to the current best approach and found DANTE to be more practical and effective at detecting darknet traffic patterns.