论文标题
基准测试Tinyml系统:挑战和方向
Benchmarking TinyML Systems: Challenges and Direction
论文作者
论文摘要
超低功率机学习(Tinyml)硬件的最新进展有望解锁一类全新的智能应用程序。但是,由于这些系统缺乏广泛接受的基准,持续的进展受到限制。基准测试使我们能够测量,从而系统地比较,评估和改善系统的性能,因此对于达到成熟的领域至关重要。在该立场论文中,我们介绍了当前的Tinyml景观,并讨论了为Tinyml工作负载开发公平而有用的硬件基准的挑战和方向。此外,我们介绍了四个基准并讨论我们的选择方法。我们的观点反映了由30多个组织组成的Tinymlperf工作组的集体思想。
Recent advancements in ultra-low-power machine learning (TinyML) hardware promises to unlock an entirely new class of smart applications. However, continued progress is limited by the lack of a widely accepted benchmark for these systems. Benchmarking allows us to measure and thereby systematically compare, evaluate, and improve the performance of systems and is therefore fundamental to a field reaching maturity. In this position paper, we present the current landscape of TinyML and discuss the challenges and direction towards developing a fair and useful hardware benchmark for TinyML workloads. Furthermore, we present our four benchmarks and discuss our selection methodology. Our viewpoints reflect the collective thoughts of the TinyMLPerf working group that is comprised of over 30 organizations.