论文标题
使用空间com的拉格朗日加速度完全平行的宇宙学模拟
Perfectly parallel cosmological simulations using spatial comoving Lagrangian acceleration
论文作者
论文摘要
由于重力的远距离性质,现有的宇宙学模拟方法缺乏高度的并行性,这限制了可以高分辨率运行的模拟的大小。为了解决这个问题,我们提出了一种新的,完全平行的方法来模拟宇宙结构形成,该方法基于空间共同的拉格朗日加速度(SCOLA)框架。我们的算法基于粒子轨迹的杂种分析和数值描述,可以有效地铺平宇宙学量,其中每个图块中的动力学是独立计算的。因此,并行度等于瓷砖的数量。我们通过使用瓷砖周围的缓冲区和SCOLA盒周围的适当的Dirichlet边界条件来优化SCOLA的准确性。结果,我们表明,分析下一代调查所需的准确性程度的宇宙学模拟可以大幅度降低的壁通路时间和非常低的记忆要求。我们的算法的完美可扩展性解锁了以高分辨率利用各种硬件体系结构来计算更大的宇宙学模拟的深刻新可能性。
Existing cosmological simulation methods lack a high degree of parallelism due to the long-range nature of the gravitational force, which limits the size of simulations that can be run at high resolution. To solve this problem, we propose a new, perfectly parallel approach to simulate cosmic structure formation, which is based on the spatial COmoving Lagrangian Acceleration (sCOLA) framework. Building upon a hybrid analytical and numerical description of particles' trajectories, our algorithm allows for an efficient tiling of a cosmological volume, where the dynamics within each tile is computed independently. As a consequence, the degree of parallelism is equal to the number of tiles. We optimised the accuracy of sCOLA through the use of a buffer region around tiles and of appropriate Dirichlet boundary conditions around sCOLA boxes. As a result, we show that cosmological simulations at the degree of accuracy required for the analysis of the next generation of surveys can be run in drastically reduced wall-clock times and with very low memory requirements. The perfect scalability of our algorithm unlocks profoundly new possibilities for computing larger cosmological simulations at high resolution, taking advantage of a variety of hardware architectures.