论文标题
(非)加性硬盘的二进制混合物的无限压力相图
Infinite-pressure phase diagram of binary mixtures of (non)additive hard disks
论文作者
论文摘要
在纳米尺度上创建二维晶体结构的一种通用途径是界面处的胶体颗粒的自组装。在这里,我们探索了从两种不同尺寸的球形颗粒的自组装中可以预期的晶体相,我们将其映射到(添加剂或非加性)硬盘混合物。我们使用软盘盒Monte Carlo模拟将无限压力相图绘制为这些混合物的无限相图,以系统地采样单位电池中最多12个磁盘的候选晶体结构。作为两种颗粒的大小比和数量比的函数,我们发现了丰富的周期性晶体结构。此外,我们确定随机瓷砖区域以预测随机平铺准晶体稳定性范围。提高非促进性都会引起额外的晶体相,并扩大涉及大量大型接触(包括随机瓷砖)的晶体结构的稳定性状态。我们的结果提供了有用的指南,以控制界面处的胶体颗粒的自组装。
One versatile route to the creation of two-dimensional crystal structures on the nanometer to micrometer scale is the self-assembly of colloidal particles at an interface. Here, we explore the crystal phases that can be expected from the self-assembly of mixtures of spherical particles of two different sizes, which we map to (additive or non-additive) hard-disk mixtures. We map out the infinite-pressure phase diagram for these mixtures, using Floppy Box Monte Carlo simulations to systematically sample candidate crystal structures with up to 12 disks in the unit cell. As a function of the size ratio and number ratio of the two species of particles, we find a rich variety of periodic crystal structures. Additionally, we identify random tiling regions to predict random tiling quasicrystal stability ranges. Increasing non-additivity both gives rise to additional crystal phases and broadens the stability regime for crystal structures involving a large number of large-small contacts, including random tilings. Our results provide useful guidelines for controlling the self-assembly of colloidal particles at interfaces.