论文标题
下一代TSZ调查的预测:依赖宇宙的选择功能的影响
Forecasts for Next Generation tSZ Surveys: the Impact of a Cosmology-Dependent Selection Function
论文作者
论文摘要
Thermal Sunyaev-Zel'Dovich(TSZ)效应是查找和表征星系簇的主要工具之一。正在进行几项基于地面的实验,或者计划以$ \ sim 150 $ GHz的范围绘制大型望远镜。我们为“稻草人” TSZ调查提出了宇宙学的预测,该调查将观察到$ 200 $至$ 10^4 $ v $^2 $的天空面积,到2.8至20.2 $μ$ k-arcmin之间的RMS噪声水平。我们考虑的探针是群集数计数(作为集成的compton-$ y $参数和红移的函数)及其角群集(作为红移的函数)。在固定的观察时间,我们发现更广泛的调查限制了宇宙学比更深的宇宙学检测到罕见的高质量簇的能力。在所有情况下,我们都会注意到,添加聚类信息并不能实际改善数字计数中得出的约束。我们比较了通过用马尔可夫链 - 卡洛方法对后验分布与使用Fisher-Matrix形式上得出的预测进行比较。我们发现,后者产生略微乐观的约束,而在10%的水平下,错误被低估了。最重要的是,我们使用一种分析方法来估计调查的选择功能,并解释其对宇宙学参数变化的响应。我们的分析表明,忽略这种效果(在文献中进行了例行执行),分别对$σ_8$和$σ_8$和$Ω__\ MATHRM {M MATHRM {M} $的人为地限制为2.2和1.7。
The thermal Sunyaev-Zel'dovich (tSZ) effect is one of the primary tools for finding and characterizing galaxy clusters. Several ground-based experiments are either underway or are being planned for mapping wide areas of the sky at $\sim 150$ GHz with large-aperture telescopes. We present cosmological forecasts for a 'straw man' tSZ survey that will observe a sky area between $200$ and $10^4$ deg$^2$ to an rms noise level between 2.8 and 20.2 $μ$K-arcmin. The probes we consider are the cluster number counts (as a function of the integrated Compton-$Y$ parameter and redshift) and their angular clustering (as a function of redshift). At fixed observing time, we find that wider surveys constrain cosmology slightly better than deeper ones due to their increased ability to detect rare high-mass clusters. In all cases, we notice that adding the clustering information does not practically improve the constraints derived from the number counts. We compare forecasts obtained by sampling the posterior distribution with the Markov-chain-Monte-Carlo method against those derived using the Fisher-matrix formalism. We find that the latter produces slightly optimistic constraints where errors are underestimated at the 10 per cent level. Most importantly, we use an analytic method to estimate the selection function of the survey and account for its response to variations of the cosmological parameters in the likelihood function. Our analysis demonstrates that neglecting this effect (as routinely done in the literature) yields artificially tighter constraints by a factor of 2.2 and 1.7 for $σ_8$ and $Ω_\mathrm{M}$, respectively.