论文标题
具有较大电子深度模块的局部共同体学表的分解
Decomposition of local cohomology tables of modules with large E-depth
论文作者
论文摘要
我们介绍了分级模块在多项式环上的E-DEPTH的概念,以测量某些EXT模块的深度。首先,我们将分级模块在多项式环上表征为(足够)大的E深度为那些模块,这些模块(足够的)部分一般初始初始子模块保留了在无关的最大理想中支持的局部共同体学模块的希尔伯特功能,并扩展了Herzog and Sbarra和Sbarra的结果,并在sequential coparra coparra coply coledly coyulay-macamaca上扩展了。其次,我们描述了在第二作者和Smirnov的先前工作的基础上,具有足够高的E深入的模块的当地同胞表锥。最后,我们获得了Kustin和Ulrich证明的非艺术版本的Socle-Temma。
We introduce the notion of E-depth of graded modules over polynomial rings to measure the depth of certain Ext modules. First, we characterize graded modules over polynomial rings with (sufficiently) large E-depth as those modules whose (sufficiently) partial general initial submodules preserve the Hilbert function of local cohomology modules supported at the irrelevant maximal ideal, extending a result of Herzog and Sbarra on sequentially Cohen-Macaulay modules. Second, we describe the cone of local cohomology tables of modules with sufficiently high E-depth, building on previous work of the second author and Smirnov. Finally, we obtain a non-Artinian version of a socle-lemma proved by Kustin and Ulrich.