论文标题

Pannuke数据集扩展名,见解和基线

PanNuke Dataset Extension, Insights and Baselines

论文作者

Gamper, Jevgenij, Koohbanani, Navid Alemi, Benes, Ksenija, Graham, Simon, Jahanifar, Mostafa, Khurram, Syed Ali, Azam, Ayesha, Hewitt, Katherine, Rajpoot, Nasir

论文摘要

计算病理学(CPATH)的新兴领域是将深度学习方法(DL)方法应用于医疗保健的成熟基础,这是由于癌组织幻灯片的全斜图像(WSIS)中的原始像素数据的含量庞大。但是,依靠核级细节的DL算法必须能够应对“临床野生”的数据,这往往非常具有挑战性。 我们研究并扩展了最近发布的Pannuke数据集,该数据集由约200,000个核组成,分为5个临床上重要的类别,用于对WSIS中的细分和分类核的具有挑战性的任务。以前的泛伴数据集仅由多达9种不同的组织和多达21,000个未标记的核组成,刚有24,000多个带有分割掩模的标记核。 Pannuke由19种不同的组织类型组成,这些组织类型已被临床病理学家进行半自动注释和质量控制,导致数据集具有类似于临床野生且选择偏差最小的统计数据。我们研究分割和分类模型的性能时,将其应用于提出的数据集,并演示了在Pannuke上训练的模型在全片扫描图像中的应用。我们提供有关数据集和概述建议和研究方向的全面统计数据,以解决现有DL工具的局限性,当时应用于现实世界中的CPATH应用程序。

The emerging area of computational pathology (CPath) is ripe ground for the application of deep learning (DL) methods to healthcare due to the sheer volume of raw pixel data in whole-slide images (WSIs) of cancerous tissue slides. However, it is imperative for the DL algorithms relying on nuclei-level details to be able to cope with data from `the clinical wild', which tends to be quite challenging. We study, and extend recently released PanNuke dataset consisting of ~200,000 nuclei categorized into 5 clinically important classes for the challenging tasks of segmenting and classifying nuclei in WSIs. Previous pan-cancer datasets consisted of only up to 9 different tissues and up to 21,000 unlabeled nuclei and just over 24,000 labeled nuclei with segmentation masks. PanNuke consists of 19 different tissue types that have been semi-automatically annotated and quality controlled by clinical pathologists, leading to a dataset with statistics similar to the clinical wild and with minimal selection bias. We study the performance of segmentation and classification models when applied to the proposed dataset and demonstrate the application of models trained on PanNuke to whole-slide images. We provide comprehensive statistics about the dataset and outline recommendations and research directions to address the limitations of existing DL tools when applied to real-world CPath applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源