论文标题

深度尖峰神经网络中反向传播的纠正线性后突触潜在功能

Rectified Linear Postsynaptic Potential Function for Backpropagation in Deep Spiking Neural Networks

论文作者

Zhang, Malu, Wang, Jiadong, Amornpaisannon, Burin, Zhang, Zhixuan, Miriyala, VPK, Belatreche, Ammar, Qu, Hong, Wu, Jibin, Chua, Yansong, Carlson, Trevor E., Li, Haizhou

论文摘要

尖峰神经网络(SNNS)使用时空峰值模式来表示和传输信息,这不仅在生物学上是现实的,而且还适用于超低功率事件驱动的神经形态实现。在深度学习的成功中,深入尖峰神经网络(DeepSNNS)的研究为人工智能应用提供了有希望的方向。但是,对深呼的培训并不是一件直接的,因为据研究的错误背胶(BP)算法并非直接适用。在本文中,我们首先建立了为什么错误反向传播在Deepsnns中无法正常工作的理解。为了解决这个问题,我们为尖峰神经元提出了一种简单而有效的矫正线性后突触潜在功能(REL-PSP),并提出了deepsnns的尖峰依赖性的后反射(STDBP)学习算法。在STDBP算法中,使用单个尖峰的时间来传达信息(时间编码),并且以事件驱动的方式基于峰值时间进行学习(后传播)。我们的实验结果表明,提出的学习算法在DeepSNN的单个基于峰值时间的学习算法中实现了最新的分类精度。此外,通过利用从拟议的STDBP学习算法获得的训练的模型参数,我们证明了最近提出的神经形态推理加速器上的超低功率推理操作。实验结果表明,神经形态硬件消耗了总功耗的0.751 〜MW,并达到低潜伏期为47.71〜ms,以从MNIST数据集中对图像进行分类。总体而言,这项工作调查了尖峰时序动态对信息编码,突触可塑性和决策的贡献,为设计未来的Deepsnns和神经形态硬件系统的设计提供了新的视角。

Spiking Neural Networks (SNNs) use spatio-temporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation. Motivated by the success of deep learning, the study of Deep Spiking Neural Networks (DeepSNNs) provides promising directions for artificial intelligence applications. However, training of DeepSNNs is not straightforward because the well-studied error back-propagation (BP) algorithm is not directly applicable. In this paper, we first establish an understanding as to why error back-propagation does not work well in DeepSNNs. To address this problem, we propose a simple yet efficient Rectified Linear Postsynaptic Potential function (ReL-PSP) for spiking neurons and propose a Spike-Timing-Dependent Back-Propagation (STDBP) learning algorithm for DeepSNNs. In STDBP algorithm, the timing of individual spikes is used to convey information (temporal coding), and learning (back-propagation) is performed based on spike timing in an event-driven manner. Our experimental results show that the proposed learning algorithm achieves state-of-the-art classification accuracy in single spike time based learning algorithms of DeepSNNs. Furthermore, by utilizing the trained model parameters obtained from the proposed STDBP learning algorithm, we demonstrate the ultra-low-power inference operations on a recently proposed neuromorphic inference accelerator. Experimental results show that the neuromorphic hardware consumes 0.751~mW of the total power consumption and achieves a low latency of 47.71~ms to classify an image from the MNIST dataset. Overall, this work investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源