论文标题

迈向稳定且全面的域名:最大边缘领域 - 逆转训练

Towards Stable and Comprehensive Domain Alignment: Max-Margin Domain-Adversarial Training

论文作者

Yang, Jianfei, Zou, Han, Zhou, Yuxun, Xie, Lihua

论文摘要

域的适应性解决了将知识从富含标签的源域转移到标签范围甚至未标记的目标域的问题。最近,域交流训练(DAT)通过逆转域分类器的梯度传播,显示出有望学习域不变特征空间的能力。但是,由于域分类器在对抗性训练中具有压倒性的歧视能力,(2)限制性特征级别的对准以及(3)缺乏可解释性或系统的解释,DAT在(1)训练不稳定性中仍然很容易受到攻击。在本文中,我们提出了一种新型的最大范围域 - 逆转训练(MDAT),通过设计对抗性重建网络(ARN)。提出的MDAT通过用重建网络替换域分类器来稳定ARN中的梯度逆转,并且以这种方式,ARN同时执行功能级和像素级域的域对齐,而无需涉及额外的网络结构。此外,ARN对广泛的超参数设置表现出强大的鲁棒性,从而极大地减轻了模型选择的任务。广泛的经验结果证明,我们的方法表现优于其他最先进的域对准方法。此外,重建改编的功能揭示了符合我们直觉的域不变的特征空间。

Domain adaptation tackles the problem of transferring knowledge from a label-rich source domain to a label-scarce or even unlabeled target domain. Recently domain-adversarial training (DAT) has shown promising capacity to learn a domain-invariant feature space by reversing the gradient propagation of a domain classifier. However, DAT is still vulnerable in several aspects including (1) training instability due to the overwhelming discriminative ability of the domain classifier in adversarial training, (2) restrictive feature-level alignment, and (3) lack of interpretability or systematic explanation of the learned feature space. In this paper, we propose a novel Max-margin Domain-Adversarial Training (MDAT) by designing an Adversarial Reconstruction Network (ARN). The proposed MDAT stabilizes the gradient reversing in ARN by replacing the domain classifier with a reconstruction network, and in this manner ARN conducts both feature-level and pixel-level domain alignment without involving extra network structures. Furthermore, ARN demonstrates strong robustness to a wide range of hyper-parameters settings, greatly alleviating the task of model selection. Extensive empirical results validate that our approach outperforms other state-of-the-art domain alignment methods. Moreover, reconstructing adapted features reveals the domain-invariant feature space which conforms with our intuition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源