论文标题

抛物线曲线方程的方法

Parabolic approaches to curvature equations

论文作者

Bryan, Paul, Ivaki, Mohammad N., Scheuer, Julian

论文摘要

我们采用无全球条款的曲率流,以寻求严格的凸出,类似于椭圆形处方的曲率方程的间距解决方案,在简单连接的Riemannian SpaceForms和Lorentzian de Sitter Space中,规定的功能可能取决于位置和正常向量。特别是,在欧几里得空间中,我们解决了一类规定的曲率测量问题,中间$ L_P $ -ALEKSANDROV和双Minkowski问题以及其对应物,即$ L_ {P} $ -CHRISTOFFEL-CHRISTOFFEL-MINGOFFEL-MINGOFEL-MINKOWSKI类型问题。在某些情况下,除阳性外,我们不会对各向异性施加任何条件,在剩下的情况下,由于caffarelli-guan-ma,我们的状况类似于恒定等级定理/凸原理(Commun。PureAppl。Math。60(2007)(2007年),17699----1791)。我们的方法不依赖于单调熵功能,它适合治疗不具有变异结构的曲率问题。

We employ curvature flows without global terms to seek strictly convex, spacelike solutions of a broad class of elliptic prescribed curvature equations in the simply connected Riemannian spaceforms and the Lorentzian de Sitter space, where the prescribed function may depend on the position and the normal vector. In particular, in the Euclidean space we solve a class of prescribed curvature measure problems, intermediate $L_p$-Aleksandrov and dual Minkowski problems as well as their counterparts, namely the $L_{p}$-Christoffel-Minkowski type problems. In some cases we do not impose any condition on the anisotropy except positivity, and in the remaining cases our condition resembles the constant rank theorem/convexity principle due to Caffarelli-Guan-Ma (Commun. Pure Appl. Math. 60 (2007), 1769--1791). Our approach does not rely on monotone entropy functionals and it is suitable to treat curvature problems that do not possess variational structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源