论文标题
基于方面情感分析的迭代多知识转移网络
An Iterative Multi-Knowledge Transfer Network for Aspect-Based Sentiment Analysis
论文作者
论文摘要
基于方面的情感分析(ABSA)主要涉及三个子任务:方面术语提取,意见术语提取和方面级别的分类,这些分类通常以单独或联合方式处理。但是,以前的方法并不能很好地利用三个子任务之间的交互关系,并且并没有利用易于获得的文档级标记的域/情感知识,从而限制了他们的性能。为了解决这些问题,我们为端到端的ABSA提出了一个新型的迭代多知识转移网络(IMKTN)。一方面,通过ABSA子任务之间的互动相关性,我们的IMKTN将特定于任务的知识从三个子任务中的任何两个转移到代币级别的另一个,通过利用良好的路由算法,即三个子任务中的任何两个子任务都会帮助第三个子任务。另一方面,我们的IMKTN会转移文档级知识,即特定于领域和情感相关的知识,以进一步增强相应的性能。三个基准数据集的实验结果证明了我们方法的有效性和优越性。
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches do not well exploit the interactive relations among three subtasks and do not pertinently leverage the easily available document-level labeled domain/sentiment knowledge, which restricts their performances. To address these issues, we propose a novel Iterative Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA. For one thing, through the interactive correlations between the ABSA subtasks, our IMKTN transfers the task-specific knowledge from any two of the three subtasks to another one at the token level by utilizing a well-designed routing algorithm, that is, any two of the three subtasks will help the third one. For another, our IMKTN pertinently transfers the document-level knowledge, i.e., domain-specific and sentiment-related knowledge, to the aspect-level subtasks to further enhance the corresponding performance. Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of our approach.