论文标题

通用的多任务学习方法用于市区的立体声DSM过滤

A Generalized Multi-Task Learning Approach to Stereo DSM Filtering in Urban Areas

论文作者

Liebel, Lukas, Bittner, Ksenia, Körner, Marco

论文摘要

城市模型和高度地图是众多应用程序(例如灾难管理或城市规划)的宝贵数据源。尽管该信息在全球范围内尚无可用,但可以由数字表面模型(DSM)替代,该数字表面模型(DSM)自动由廉价的卫星图像产生。但是,立体声DSM通常会遇到噪音和模糊。此外,它们因植被严重扭曲,这与大多数应用的相关性较小。这样的基本模型可以通过卷积神经网络(CNN)进行过滤,该卷积神经网络(CNN)是根据数字高程模型(DEMS)和3D城市模型进行训练的,以获得精制的DSM。我们提出了一个模块化的多任务学习概念,该概念将现有方法整合到广义框架中。我们的编码器模型具有共享编码器和多个特定任务的解码器利用屋顶类型分类作为次要任务和包括条件对抗性术语在内的多个目标。基于学习的不确定性估计值,在最终的多任务损失函数中自动加权了贡献的单一目标损失。我们评估了该网络体系结构家族的特定实例的性能。我们的方法在定量和定性上始终优于公共数据的最新技术状态,并概括地概括到独立研究领域的新数据集。

City models and height maps of urban areas serve as a valuable data source for numerous applications, such as disaster management or city planning. While this information is not globally available, it can be substituted by digital surface models (DSMs), automatically produced from inexpensive satellite imagery. However, stereo DSMs often suffer from noise and blur. Furthermore, they are heavily distorted by vegetation, which is of lesser relevance for most applications. Such basic models can be filtered by convolutional neural networks (CNNs), trained on labels derived from digital elevation models (DEMs) and 3D city models, in order to obtain a refined DSM. We propose a modular multi-task learning concept that consolidates existing approaches into a generalized framework. Our encoder-decoder models with shared encoders and multiple task-specific decoders leverage roof type classification as a secondary task and multiple objectives including a conditional adversarial term. The contributing single-objective losses are automatically weighted in the final multi-task loss function based on learned uncertainty estimates. We evaluated the performance of specific instances of this family of network architectures. Our method consistently outperforms the state of the art on common data, both quantitatively and qualitatively, and generalizes well to a new dataset of an independent study area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源