论文标题

大型诱导的树木在密集的随机图中

Large induced trees in dense random graphs

论文作者

Draganić, Nemanja

论文摘要

Erdős和Palka在1983年开始对诱导树木的最大尺寸进行研究。他们证明,对于$ 0 <p <1 $ $ g_ {n,p} $的最大诱导树大小的每一个固定$ 0 <p <1 $,集中在$ 2 \ log_q(np)$左右,$ 2 \ log_q(np)$ abteryability,log_q(np)$ ablobiality,$ q =($ q =(1-p =(1-p =(1-p)$)^$。 de la vega显示出$ p = c/n $的相同值的集中度,其中$ c $是一个很大的常数,他的证明也适用于所有较大的$ p $。我们表明,对于任何给定的树$ t $,具有有限的最高度和尺寸$ $(2-o(1))\ log_q(np)$,$ g_ {n,p} $包含$ t $的感应副本,具有$ n^{ - 1/2} \ ln^{10/9} n \ leq p \ leq p \ leq p \ leq leq leq p \ leq p \ leq p \ leq p \ leq p \ leq p \ leq 0.99 $ n^{ - 1/2} \ ln^{ - 1/1/1/1/20.99 $ 99。这是渐进的最佳选择。

Erdős and Palka initiated the study of the maximal size of induced trees in random graphs in 1983. They proved that for every fixed $0<p<1$ the size of a largest induced tree in $G_{n,p}$ is concentrated around $2\log_q (np)$ with high probability, where $q=(1-p)^{-1}$. De la Vega showed concentration around the same value for $p=C/n$ where $C$ is a large constant, and his proof also works for all larger $p$. We show that for any given tree $T$ with bounded maximum degree and of size $(2-o(1))\log_q(np)$, $G_{n,p}$ contains an induced copy of $T$ with high probability for $n^{-1/2}\ln^{10/9}n\leq p\leq 0.99$. This is asymptotically optimal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源