论文标题

奇异抛物线量度数据问题的规律性估计,急剧增长

Regularity estimates for singular parabolic measure data problems with sharp growth

论文作者

Park, Jung-Tae, Shin, Pilsoo

论文摘要

我们证明了带有测量数据的抛物线$ p $ -laplace类型方程的全局梯度估计,其模型为$$ u_t-\ textrm {div} \ left(| | du |^{p-2} du \ right)=μ\ quad \ quad \ quad \ quad \ quad \ textrm {in} \ Mathbb {r},$$,其中$μ$是具有有限总质量的签名ra。我们考虑奇异的情况$$ \ frac {2n} {n+1} <p \ le 2- \ frac {1} {1} {n+1} $$,并给出$ω$的非线性和边界的最小条件,这可以保证此类测量数据问题的规律性结果。

We prove global gradient estimates for parabolic $p$-Laplace type equations with measure data, whose model is $$u_t - \textrm{div} \left(|Du|^{p-2} Du\right) = μ\quad \textrm{in} \ Ω\times (0,T) \subset \mathbb{R}^n \times \mathbb{R},$$ where $μ$ is a signed Radon measure with finite total mass. We consider the singular case $$\frac{2n}{n+1} <p \le 2-\frac{1}{n+1}$$ and give possibly minimal conditions on the nonlinearity and the boundary of $Ω$, which guarantee the regularity results for such measure data problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源