论文标题

轮廓网:迈出进一步迈向准确的任意形状场景文本检测

ContourNet: Taking a Further Step toward Accurate Arbitrary-shaped Scene Text Detection

论文作者

Wang, Yuxin, Xie, Hongtao, Zha, Zhengjun, Xing, Mengting, Fu, Zilong, Zhang, Yongdong

论文摘要

近年来,场景文本检测目睹了快速发展。但是,仍然存在两个主要挑战:1)许多方法在其文本表示中遭受误报; 2)场景文本的大规模差异使网络很难学习样本。在本文中,我们提出了Contournet,该轮廓有效地处理了这两个问题,迈出了进一步的一步,朝着准确的任意形状检测迈出了一步。首先,提出了对量表不敏感的自适应区域建议网络(自适应RPN),以生成文本建议,仅专注于预测和地面周围边界框之间的相交(IOU)值。然后,一个新颖的本地正交纹理感知模块(LOTM)在两个正交方向上建模了建议特征的本地纹理信息,并代表具有一组轮廓点的文本区域。考虑到强大的单向或弱正交激活通常是由假阳性模式的单调纹理特征(例如条纹)引起的,我们的方法仅通过仅输出两个正交方向的响应值高的响应值来有效地抑制这些假阳性。这给出了更准确的文本区域描述。在三个具有挑战性的数据集(总文本,CTW1500和ICDAR2015)上进行了广泛的实验证明了我们的方法是否实现了最新的性能。代码可在https://github.com/wangyuxin87/contournet上找到。

Scene text detection has witnessed rapid development in recent years. However, there still exists two main challenges: 1) many methods suffer from false positives in their text representations; 2) the large scale variance of scene texts makes it hard for network to learn samples. In this paper, we propose the ContourNet, which effectively handles these two problems taking a further step toward accurate arbitrary-shaped text detection. At first, a scale-insensitive Adaptive Region Proposal Network (Adaptive-RPN) is proposed to generate text proposals by only focusing on the Intersection over Union (IoU) values between predicted and ground-truth bounding boxes. Then a novel Local Orthogonal Texture-aware Module (LOTM) models the local texture information of proposal features in two orthogonal directions and represents text region with a set of contour points. Considering that the strong unidirectional or weakly orthogonal activation is usually caused by the monotonous texture characteristic of false-positive patterns (e.g. streaks.), our method effectively suppresses these false positives by only outputting predictions with high response value in both orthogonal directions. This gives more accurate description of text regions. Extensive experiments on three challenging datasets (Total-Text, CTW1500 and ICDAR2015) verify that our method achieves the state-of-the-art performance. Code is available at https://github.com/wangyuxin87/ContourNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源