论文标题

时间模式连续变量3维聚类状态,用于基于拓扑保护的测量量子计算

Temporal-mode continuous-variable 3-dimensional cluster state for topologically-protected measurement-based quantum computation

论文作者

Fukui, Kosuke, Asavanant, Warit, Furusawa, Akira

论文摘要

基于测量的量子计算在光学设置中具有连续变量的量子计算显示了实施大规模量子计算的巨大希望,其中时间域的多路复用方法使我们能够生成用于执行基于测量量子计算的大规模群集状态。为了有效利用时间域多路复用方法的优势,在本文中,我们提出了生成大规模3维聚类状态的方法,该方法是基于拓扑保护的基于测量的量子计算的平台。我们的方法结合了时间域的多路复用方法和分裂和诱导方法,并具有实施大规模量子计算的两个优点。首先,在实验上是可行的,用于验证三维聚类状态的纠缠的挤压水平。第二个优点是对基于拓扑保护的测量量子计算中连续变量的有限压缩得出的模拟误差的鲁棒性。因此,我们的方法是一种具有连续变量的大规模量子计算的有前途的方法。

Measurement-based quantum computation with continuous variables in an optical setup shows the great promise towards implementation of large-scale quantum computation, where the time-domain multiplexing approach enables us to generate the large-scale cluster state used to perform measurement-based quantum computation. To make effective use of the advantage of the time-domain multiplexing approach, in this paper, we propose the method to generate the large-scale 3-dimensional cluster state which is a platform for topologically protected measurement-based quantum computation. Our method combines a time-domain multiplexing approach with a divide-and-conquer approach, and has the two advantages for implementing large-scale quantum computation. First, the squeezing level for verification of the entanglement of the 3-dimensional cluster states is experimentally feasible. The second advantage is the robustness against analog errors derived from the finite squeezing of continuous variables during topologically-protected measurement-based quantum computation. Therefore, our method is a promising approach to implement large-scale quantum computation with continuous variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源