论文标题
推动器和拉普勒微武器的对称混合物的行为为非互动悬浮液
Symmetric mixtures of pusher and puller microswimmers behave as noninteracting suspensions
论文作者
论文摘要
后置和前式微杆菌的悬浮液浸入液体中,分别被称为``PUSHERS''和``Pullers''和``Pullers''的悬浮液,表现出质量不同的集体行为:除了特征性密度之外,Pusher悬架表现出水力动力学的不稳定性,表现出一种流体动力的不稳定,导致集体运动导致已知的活跃的动弹,这是一种现场表演者,属于现场分类者,这是不同意的。在这封信中,我们使用动力学理论和大规模粒子分辨模拟描述了二元推动器的集体动力学 - 播种机混合物。我们得出并验证不稳定标准,表明,随着拉特勒的分数$χ$的增加,主动湍流的临界密度移至较高的值,并且以$χ×geq 0.5 $的速度消失。然后,我们通过分析和数值显示1:1的混合物的两点流体动力相关性等于非互动游泳者的悬架。令人惊讶的是,我们的数值分析还表明,流体速度波动的完全概率分布崩溃到一个非互动系统的密度下,而游泳器 - 温水相关性严格不存在。因此,我们的结果表明,1:1推动器的流体速度波动 - 播种机混合物完全等于任何密度下相应的非相互作用悬浮液的混合物,这是一个令人惊讶的取消,在均衡的远程相互作用系统中no对应物。
Suspensions of rear- and front-actuated microswimmers immersed in a fluid, known respectively as ``pushers'' and ``pullers'', display qualitatively different collective behaviours: beyond a characteristic density, pusher suspensions exhibit a hydrodynamic instability leading to collective motion known as active turbulence, a phenomenon which is absent for pullers. In this Letter, we describe the collective dynamics of a binary pusher--puller mixture using kinetic theory and large-scale particle-resolved simulations. We derive and verify an instability criterion, showing that the critical density for active turbulence moves to higher values as the fraction $χ$ of pullers is increased and disappears for $χ\geq 0.5$. We then show analytically and numerically that the two-point hydrodynamic correlations of the 1:1 mixture are equal to those of a suspension of noninteracting swimmers. Strikingly, our numerical analysis furthermore shows that the full probability distribution of the fluid velocity fluctuations collapses onto the one of a noninteracting system at the same density, where swimmer--swimmer correlations are strictly absent. Our results thus indicate that the fluid velocity fluctuations in 1:1 pusher--puller mixtures are exactly equal to those of the corresponding noninteracting suspension at any density, a surprising cancellation with no counterpart in equilibrium long-range interacting systems.