论文标题

与人类解析的纠正策略的自学学习

Self-Learning with Rectification Strategy for Human Parsing

论文作者

Li, Tao, Liang, Zhiyuan, Zhao, Sanyuan, Gong, Jiahao, Shen, Jianbing

论文摘要

在本文中,我们解决了人类解析任务中的样本短缺问题。我们从自学策略开始,该策略生成了未标记数据以重新训练模型的伪标记。但是,直接使用嘈杂的伪标签会导致错误扩增和积累。考虑到人体的拓扑结构,我们提出了一种可训练的图形推理方法,该方法在图节点之间建立了内部结构连接,以纠正伪标记中的两个典型误差,即全局结构误差和局部一致性误差。对于全局误差,我们首先将类别特征转换为具有粗粒结构信息的高级图形模型,然后将高级图形分解为重建类别特征。重建的特征具有更强的代表人体拓扑结构的能力。扩大功能的接受场可以有效地减少局部误差。我们首先将项目功能像素特征到本地图模型,以层次图的方式捕获像素的关系,然后将关系信息转换回像素。借助全球结构和局部一致性模块,这些错误是整流的,并生成了自信的伪标记以进行重新训练。唇部和ATR数据集的广泛实验证明了我们的全球和局部整流模块的有效性。我们的方法在监督人的解析任务中优于其他最先进的方法。

In this paper, we solve the sample shortage problem in the human parsing task. We begin with the self-learning strategy, which generates pseudo-labels for unlabeled data to retrain the model. However, directly using noisy pseudo-labels will cause error amplification and accumulation. Considering the topology structure of human body, we propose a trainable graph reasoning method that establishes internal structural connections between graph nodes to correct two typical errors in the pseudo-labels, i.e., the global structural error and the local consistency error. For the global error, we first transform category-wise features into a high-level graph model with coarse-grained structural information, and then decouple the high-level graph to reconstruct the category features. The reconstructed features have a stronger ability to represent the topology structure of the human body. Enlarging the receptive field of features can effectively reducing the local error. We first project feature pixels into a local graph model to capture pixel-wise relations in a hierarchical graph manner, then reverse the relation information back to the pixels. With the global structural and local consistency modules, these errors are rectified and confident pseudo-labels are generated for retraining. Extensive experiments on the LIP and the ATR datasets demonstrate the effectiveness of our global and local rectification modules. Our method outperforms other state-of-the-art methods in supervised human parsing tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源