论文标题
CAGGNET:医疗图像分割的跨聚合网络
CAggNet: Crossing Aggregation Network for Medical Image Segmentation
论文作者
论文摘要
在本文中,我们介绍了跨汇总网络(CAGGNET),这是一种新型的与医学图像分析的密集连接的语义分割方法。交叉聚合网络从深层聚合中提高了想法,并在语义和空间信息融合中产生了重大创新。在CAGGNET中,通用U-NET的简单跳过连接结构被多层下采样和上采样层的聚合所取代,这是嵌套跳过连接的一种新形式。这种聚合体系结构使网络能够在语义分段中交互式融合粗糙和细特征。它还将加权聚合模块引入了网络末端的上样本多尺度输出。我们已经评估并比较了两个公共医疗图像数据集中的几种基于U-NET的方法,包括2018年Data Science Bowl Nuclei检测数据集和2015 Miccai Gell分段竞赛数据集。实验结果表明,与现有的改进的U-NET和UNET ++结构相比,CAGGNET改善了医学对象识别,并实现了更准确,更有效的分割。
In this paper, we present Crossing Aggregation Network (CAggNet), a novel densely connected semantic segmentation approach for medical image analysis. The crossing aggregation network improves the idea from deep layer aggregation and makes significant innovations in semantic and spatial information fusion. In CAggNet, the simple skip connection structure of general U-Net is replaced by aggregations of multi-level down-sampling and up-sampling layers, which is a new form of nested skip connection. This aggregation architecture enables the network to fuse both coarse and fine features interactively in semantic segmentation. It also introduces weighted aggregation module to up-sample multi-scale output at the end of the network. We have evaluated and compared our CAggNet with several advanced U-Net based methods in two public medical image datasets, including the 2018 Data Science Bowl nuclei detection dataset and the 2015 MICCAI gland segmentation competition dataset. Experimental results indicate that CAggNet improves medical object recognition and achieves a more accurate and efficient segmentation compared to existing improved U-Net and UNet++ structure.