论文标题
网络感知的雾计算分布式学习优化
Network-Aware Optimization of Distributed Learning for Fog Computing
论文作者
论文摘要
FOG计算有望通过在连接的设备上分发处理来使机器学习任务扩展到大量数据。实现这一目标的两个主要挑战是设备中的异质性计算资源和拓扑限制,设备可以在哪些方面进行通信。我们通过开发第一个网络感知的分布式学习优化方法来解决这些挑战,其中设备最佳地共享本地数据处理并将其学习的参数发送到服务器以在某些时间间隔内进行聚合。与传统的联合学习框架不同,我们的方法使设备可以彼此卸载其数据处理任务,并通过这些决策通过凸数据传输优化问题确定,该问题可以折腾与设备处理,卸载和删除数据点相关的成本。我们通过分析表征了不同雾网络拓扑的最佳数据传输解决方案,例如,在网络中的计算成本范围内,卸载的值大约是线性的。我们在测试数据集上进行的后续实验,我们收集的测试数据集证实,我们的算法能够基本上改善网络资源的利用,而无需牺牲学习模型的准确性。在这些实验中,我们还研究了网络动态的影响,量化进入或退出网络对模型学习和资源成本的节点的影响。
Fog computing promises to enable machine learning tasks to scale to large amounts of data by distributing processing across connected devices. Two key challenges to achieving this goal are heterogeneity in devices compute resources and topology constraints on which devices can communicate with each other. We address these challenges by developing the first network-aware distributed learning optimization methodology where devices optimally share local data processing and send their learnt parameters to a server for aggregation at certain time intervals. Unlike traditional federated learning frameworks, our method enables devices to offload their data processing tasks to each other, with these decisions determined through a convex data transfer optimization problem that trades off costs associated with devices processing, offloading, and discarding data points. We analytically characterize the optimal data transfer solution for different fog network topologies, showing for example that the value of offloading is approximately linear in the range of computing costs in the network. Our subsequent experiments on testbed datasets we collect confirm that our algorithms are able to improve network resource utilization substantially without sacrificing the accuracy of the learned model. In these experiments, we also study the effect of network dynamics, quantifying the impact of nodes entering or exiting the network on model learning and resource costs.