论文标题

SuperKernel神经建筑搜索图像Denoising

Superkernel Neural Architecture Search for Image Denoising

论文作者

Możejko, Marcin, Latkowski, Tomasz, Treszczotko, Łukasz, Szafraniuk, Michał, Trojanowski, Krzysztof

论文摘要

神经体系结构搜索(NAS)的最新进展导致为图像分类,对象检测或语义分割等任务找到新的最先进的人工神经网络(ANN)解决方案,而无需进行大量的人类监督。在本文中,我们专注于探索NAS,以实现图像DeNoing的密集预测任务。由于昂贵的培训程序,大多数用于图像增强的NAS解决方案都依赖于增强学习或进化算法探索,通常需要数周(甚至几个月)才能训练。因此,我们介绍了各种超级内内尔技术的新有效实施,该技术可以快速(6-8 RTX2080 GPU小时)单发训练,以实现密集预测。我们证明了我们的方法对SIDD+基准测试的有效性用于图像denoising。

Recent advancements in Neural Architecture Search(NAS) resulted in finding new state-of-the-art Artificial Neural Network (ANN) solutions for tasks like image classification, object detection, or semantic segmentation without substantial human supervision. In this paper, we focus on exploring NAS for a dense prediction task that is image denoising. Due to a costly training procedure, most NAS solutions for image enhancement rely on reinforcement learning or evolutionary algorithm exploration, which usually take weeks (or even months) to train. Therefore, we introduce a new efficient implementation of various superkernel techniques that enable fast (6-8 RTX2080 GPU hours) single-shot training of models for dense predictions. We demonstrate the effectiveness of our method on the SIDD+ benchmark for image denoising.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源