论文标题
循环小组在福卡亚类别和镜子对称性上的行动
Cyclic group actions on Fukaya categories and mirror symmetry
论文作者
论文摘要
令$(x,ω)$为紧凑的符号歧管,其第一类Chern类$ C_1(x)$由正整数$ n $除外。我们构建了$ \ mathbb {z} _ {2n} $ - 在其Fukaya类别$ fuk(x)$和$ \ mathbb {z} _n $ -action上的fukaya类别上的操作。我们表明,此动作与不同本地模型的胶合功能兼容。
Let $(X,ω)$ be a compact symplectic manifold whose first Chern class $c_1(X)$ is divisible by a positive integer $n$. We construct a $\mathbb{Z}_{2n}$-action on its Fukaya category $Fuk(X)$ and a $\mathbb{Z}_n$-action on the local models of its moduli of Lagrangian branes. We show that this action is compatible with the gluing functions for different local models.