论文标题

不断发展的合作身体任务的二元策略

Evolving Dyadic Strategies for a Cooperative Physical Task

论文作者

Sheybani, Saber, Izquierdo, Eduardo J., Roth, Eatai

论文摘要

许多合作的身体任务要求个人扮演专业角色(例如,领导者追随者)。人类是熟练的合作者,在天生的角色之间谈判这些角色和过渡。然而,如何委派和重新分配角色尚未得到很好的理解。使用遗传算法,我们进化了模拟药物来探索可行的角色转换策略的空间。在合作手动任务中应用这些切换策略,代理处理视觉和触觉提示,以决定何时切换角色。然后,我们分析与合作相关的属性进化的虚拟人群:负载共享和时间协调。我们发现表现最佳的二元组表现出高度的时间协调(反同步)。反过来,反同步与合作剂参数之间的对称性相关。这些模拟提供了关于人类合作者如何在二元任务中介绍角色的假设。

Many cooperative physical tasks require that individuals play specialized roles (e.g., leader-follower). Humans are adept cooperators, negotiating these roles and transitions between roles innately. Yet how roles are delegated and reassigned is not well understood. Using a genetic algorithm, we evolve simulated agents to explore a space of feasible role-switching policies. Applying these switching policies in a cooperative manual task, agents process visual and haptic cues to decide when to switch roles. We then analyze the evolved virtual population for attributes typically associated with cooperation: load sharing and temporal coordination. We find that the best performing dyads exhibit high temporal coordination (anti-synchrony). And in turn, anti-synchrony is correlated to symmetry between the parameters of the cooperative agents. These simulations furnish hypotheses as to how human cooperators might mediate roles in dyadic tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源