论文标题

构建面向问题的医疗记录的知识库完成

Knowledge Base Completion for Constructing Problem-Oriented Medical Records

论文作者

Mullenbach, James, Swartz, Jordan, McKelvey, T. Greg, Dai, Hui, Sontag, David

论文摘要

电子健康记录和个人健康记录通常都是通过数据类型来组织的,医疗问题,药物,程序和实验室结果按时间顺序排序,在图表的不同区域中分类。结果,很难找到所有有关给定医疗问题的临床问题的相关信息。一个有希望的替代方法是通过问题,相关的药物,程序和其他相关信息都通过问题进行组织。 Buchanan(2017)最近通过专家共识手动定义了11个医疗问题以及每个相关的实验室和药物。我们展示了如何在电子健康记录上使用机器学习来自动构建这些基于问题的相关药物,程序和实验室测试的分组。我们将学习任务制定为知识基础的完成之一,并注释一个数据集,该数据集将问题集从11到32扩展到32。我们开发了一种模型体系结构,该模型体系结构利用了预先训练的概念嵌入和用法数据,该数据将纵向数据集中包含的概念与大型卫生系统中包含的概念相关联。我们评估了算法建议相关药物,程序和实验室测试的能力,并发现该方法即使在培训过程中隐藏的问题也提供了可行的建议。数据集以及用于复制结果的代码,可在https://github.com/asappresearch/kbc-pomr上获得。

Both electronic health records and personal health records are typically organized by data type, with medical problems, medications, procedures, and laboratory results chronologically sorted in separate areas of the chart. As a result, it can be difficult to find all of the relevant information for answering a clinical question about a given medical problem. A promising alternative is to instead organize by problems, with related medications, procedures, and other pertinent information all grouped together. A recent effort by Buchanan (2017) manually defined, through expert consensus, 11 medical problems and the relevant labs and medications for each. We show how to use machine learning on electronic health records to instead automatically construct these problem-based groupings of relevant medications, procedures, and laboratory tests. We formulate the learning task as one of knowledge base completion, and annotate a dataset that expands the set of problems from 11 to 32. We develop a model architecture that exploits both pre-trained concept embeddings and usage data relating the concepts contained in a longitudinal dataset from a large health system. We evaluate our algorithms' ability to suggest relevant medications, procedures, and lab tests, and find that the approach provides feasible suggestions even for problems that are hidden during training. The dataset, along with code to reproduce our results, is available at https://github.com/asappresearch/kbc-pomr.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源