论文标题
来自特殊收藏的VAFA编织不变性
Vafa-Witten invariants from exceptional collections
论文作者
论文摘要
在$ S $上的半稳定相干滑轮上描述了当地Calabi-Yau三维三维基本$ S $ SUPESMEMEMMETRIC D-BRANES。在适当的条件下,BPS指数计算这些对象(称为概括的Donaldson-Thomas不变性)与$ s $的VAFA - 编织不变式(编码半稳定吊带吊轴的模量空间的Betti数字)一致。对于接受大量特殊滑轮集合的表面,我们通过利用相干滑轮的派生类别与具有$(q,w)$(q,w)的适当表示类别之间的同构类别来开发一种计算这些不变性的通用方法。我们阐明了$ s $上的Chern类$γ$与二极管$ j $与Dimension Vector $ \ vec n $和稳定参数$ \VECζ$之间的词典。对于我们考虑的所有示例,包括所有Del Pezzo和Hirzebruch表面,我们发现BPS索引$ω__\ Star(γ)$在吸引子点(或自稳定性条件)消失了,除了对应于简单表示和纯d0-branes的尺寸向量。这打开了使用流树或库仑分支公式在任何腔室中计算BPS索引的可能性。在所有情况下,我们都会根据基于墙壁和爆破公式的VAFA为不变性的独立计算进行精确的一致性。该协议表明,i)生成来自强大的特殊集合的大量颤动的DT不变性的功能是较高深度和ii)的模块化功能,而II)在此类的calabi-yau deimenties中,在此类局部的calabi-yau deipiceries中不存在非平凡的单中心黑洞和缩放溶液。
Supersymmetric D-branes supported on the complex two-dimensional base $S$ of the local Calabi-Yau threefold $K_S$ are described by semi-stable coherent sheaves on $S$. Under suitable conditions, the BPS indices counting these objects (known as generalized Donaldson-Thomas invariants) coincide with the Vafa-Witten invariants of $S$ (which encode the Betti numbers of the moduli space of semi-stable sheaves). For surfaces which admit a strong collection of exceptional sheaves, we develop a general method for computing these invariants by exploiting the isomorphism between the derived category of coherent sheaves and the derived category of representations of a suitable quiver with potential $(Q,W)$ constructed from the exceptional collection. We spell out the dictionary between the Chern class $γ$ and polarization $J$ on $S$ vs. the dimension vector $\vec N$ and stability parameters $\vecζ$ on the quiver side. For all examples that we consider, which include all del Pezzo and Hirzebruch surfaces, we find that the BPS indices $Ω_\star(γ)$ at the attractor point (or self-stability condition) vanish, except for dimension vectors corresponding to simple representations and pure D0-branes. This opens up the possibility to compute the BPS indices in any chamber using either the flow tree or the Coulomb branch formula. In all cases we find precise agreement with independent computations of Vafa-Witten invariants based on wall-crossing and blow-up formulae. This agreement suggests that i) generating functions of DT invariants for a large class of quivers coming from strong exceptional collections are mock modular functions of higher depth and ii) non-trivial single-centered black holes and scaling solutions do not exist quantum mechanically in such local Calabi-Yau geometries.