论文标题

与局部损失的混乱散射:S-Matrix零和反射时间差的系统逆转不变性的时间差

Chaotic Scattering with Localized Losses: S-Matrix Zeros and Reflection Time Difference for Systems with Broken Time Reversal Invariance

论文作者

Osman, Mohammed, Fyodorov, Yan V.

论文摘要

通过对相干完美吸收现象的最新研究的激励,我们开发了随机矩阵理论框架,以理解复杂能量平面中(亚基)散射矩阵的零的统计数据,以及最近引入的反射时间差异(RTD)。后者在S-Matrix Zeros中扮演与Wigner时间延迟相同的角色。对于具有损坏时间不变性的系统,我们以封闭式确定形式得出零值的n点相关函数,并研究相关核的各种渐进剂和特殊情况。然后评估RTD的时间相关函数,并将其与数值模拟进行比较。这允许在RTD的分布中识别一个立方尾巴,我们认为这是对所有对称类别有效的超单元特征。我们还讨论了通过谐波反演从散射数据中提取S-矩阵零的两种方法。

Motivated by recent studies of the phenomenon of Coherent Perfect Absorption, we develop the random matrix theory framework for understanding statistics of the zeros of the (subunitary) scattering matrices in the complex energy plane, as well as of the recently introduced Refection Time Difference (RTD). The latter plays the same role for S-matrix zeros as the Wigner time delay does for its poles. For systems with broken time-reversal invariance, we derive the n -point correlation functions of the zeros in a closed determinantal form, and study various asymptotics and special cases of the associated kernel. The time-correlation function of the RTD is then evaluated and compared with numerical simulations. This allows to identify a cubic tail in the distribution of RTD, which we conjecture to be a superuniversal characteristic valid for all symmetry classes. We also discuss two methods for possible extraction of S-matrix zeroes from scattering data by harmonic inversion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源