论文标题

如果可以的话,请抓住我:使用电源分析来识别HPC活动

Catch Me If You Can: Using Power Analysis to Identify HPC Activity

论文作者

Copos, Bogdan, Peisert, Sean

论文摘要

在大型计算平台(例如高性能计算(HPC)和云计算系统)上监视用户是不平凡的。由于粒度限制,诸如流程查看者之类的公用事业对用户正在运行的内容提供了有限的见解,而其他数据来源(例如系统调用跟踪)可以施加大量的操作开销。但是,尽管有技术和程序性的措施,但过去已经记录了滥用有价值的HPC资源的用户实例{HPCBITMINE},并且对来自世界各地的大量松散验证的用户开放的系统都有滥用的风险。在本文中,我们展示了如何使用HPC平台的电力消耗数据来确定执行哪些程序。直觉是在执行过程中,程序表现出各种CPU和内存活动模式。这些模式反映在系统的功耗中,可用于识别运行的程序。我们使用各种科学基准在劳伦斯·伯克利国家实验室的HPC机架上测试了我们的方法。在其他有趣的观察结果中,我们的结果表明,通过监视HPC机架的功耗,即使在噪声方案中,也可以识别特定程序是否精确地运行并回忆95 \%。

Monitoring users on large computing platforms such as high performance computing (HPC) and cloud computing systems is non-trivial. Utilities such as process viewers provide limited insight into what users are running, due to granularity limitation, and other sources of data, such as system call tracing, can impose significant operational overhead. However, despite technical and procedural measures, instances of users abusing valuable HPC resources for personal gains have been documented in the past \cite{hpcbitmine}, and systems that are open to large numbers of loosely-verified users from around the world are at risk of abuse. In this paper, we show how electrical power consumption data from an HPC platform can be used to identify what programs are executed. The intuition is that during execution, programs exhibit various patterns of CPU and memory activity. These patterns are reflected in the power consumption of the system and can be used to identify programs running. We test our approach on an HPC rack at Lawrence Berkeley National Laboratory using a variety of scientific benchmarks. Among other interesting observations, our results show that by monitoring the power consumption of an HPC rack, it is possible to identify if particular programs are running with precision up to and recall of 95\% even in noisy scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源