论文标题

投影和概率驱动的黑框攻击

Projection & Probability-Driven Black-Box Attack

论文作者

Li, Jie, Ji, Rongrong, Liu, Hong, Liu, Jianzhuang, Zhong, Bineng, Deng, Cheng, Tian, Qi

论文摘要

在黑盒环境中产生对抗性示例,对巨大的实用应用前景保持了重大挑战。特别是,现有的黑框攻击遭受了过度查询的需求,因为在高维空间中找到优化的适当方向是非平凡的。在本文中,我们提出了投影和概率驱动的黑盒攻击(PPBA),以通过减少解决方案空间并提供更好的优化来解决此问题。为了减少解决方案空间,我们首先将对抗性扰动优化问题建模为恢复具有压缩传感的频率 - 避免扰动的过程,在低频空间中的随机噪声更可能是对抗性的。然后,我们提出了一种简单的方法来构造低频约束感应矩阵,该矩阵可作为插件投影矩阵,以降低维度。这种传感矩阵显示足够灵活,可以集成到NES和BANDITS $ _ {TD} $之类的现有方法中。为了获得更好的优化,我们通过概率驱动的策略进行随机步行,该策略在整个进度中利用所有查询来充分利用传感矩阵来获得较少的查询预算。广泛的实验表明,与最先进的方法相比,我们的方法最多需要少24%,并且攻击成功率更高。最后,在现实世界的在线服务(即Google Cloud Vision API)上评估了攻击方法,该方法进一步证明了我们的实际潜力。

Generating adversarial examples in a black-box setting retains a significant challenge with vast practical application prospects. In particular, existing black-box attacks suffer from the need for excessive queries, as it is non-trivial to find an appropriate direction to optimize in the high-dimensional space. In this paper, we propose Projection & Probability-driven Black-box Attack (PPBA) to tackle this problem by reducing the solution space and providing better optimization. For reducing the solution space, we first model the adversarial perturbation optimization problem as a process of recovering frequency-sparse perturbations with compressed sensing, under the setting that random noise in the low-frequency space is more likely to be adversarial. We then propose a simple method to construct a low-frequency constrained sensing matrix, which works as a plug-and-play projection matrix to reduce the dimensionality. Such a sensing matrix is shown to be flexible enough to be integrated into existing methods like NES and Bandits$_{TD}$. For better optimization, we perform a random walk with a probability-driven strategy, which utilizes all queries over the whole progress to make full use of the sensing matrix for a less query budget. Extensive experiments show that our method requires at most 24% fewer queries with a higher attack success rate compared with state-of-the-art approaches. Finally, the attack method is evaluated on the real-world online service, i.e., Google Cloud Vision API, which further demonstrates our practical potentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源