论文标题

用于高维预测的灵活的共同数据学习

Flexible co-data learning for high-dimensional prediction

论文作者

van Nee, Mirrelijn M., Wessels, Lodewyk F. A., van de Wiel, Mark A.

论文摘要

临床研究通常集中在复杂的特征上,其中许多变量在驾驶或治愈疾病的机制中起作用。当数据具有高维时,临床预测很难,但是其他信息(例如领域知识和先前发表的研究)可能有助于改善预测。这种互补数据或共同数据提供了有关协变量的信息,例如基因组位置或外部研究中的p值。我们的方法使利用多个和各种共同数据源可以改善预测。我们使用离散或连续的co-DATA来定义可能重叠或结构化的协变量组。然后,这些用于估计广义线性和COX模型的自适应多组脊惩罚。我们将群体惩罚超标剂的经验贝叶斯估计与额外的收缩水平相结合。这使得一个独特的灵活框架,因为可以在组级别上使用任何类型的收缩。超参数收缩学会了特定的共同数据源的相关性,对许多组的超参数过度拟合,并说明了结构化的共同数据。我们描述了各种类型的共同数据,并提出了合适的Hypershrinkage形式。该方法非常通用,因为它允许整合和加权多个共同数据集,包括未确定的协变量和后变量选择。我们在两种癌症基因组学应用程序上证明了这一点,并表明它可以大大改善其他稠密和简约的预后模型的性能,并稳定可变选择。

Clinical research often focuses on complex traits in which many variables play a role in mechanisms driving, or curing, diseases. Clinical prediction is hard when data is high-dimensional, but additional information, like domain knowledge and previously published studies, may be helpful to improve predictions. Such complementary data, or co-data, provide information on the covariates, such as genomic location or p-values from external studies. Our method enables exploiting multiple and various co-data sources to improve predictions. We use discrete or continuous co-data to define possibly overlapping or hierarchically structured groups of covariates. These are then used to estimate adaptive multi-group ridge penalties for generalised linear and Cox models. We combine empirical Bayes estimation of group penalty hyperparameters with an extra level of shrinkage. This renders a uniquely flexible framework as any type of shrinkage can be used on the group level. The hyperparameter shrinkage learns how relevant a specific co-data source is, counters overfitting of hyperparameters for many groups, and accounts for structured co-data. We describe various types of co-data and propose suitable forms of hypershrinkage. The method is very versatile, as it allows for integration and weighting of multiple co-data sets, inclusion of unpenalised covariates and posterior variable selection. We demonstrate it on two cancer genomics applications and show that it may improve the performance of other dense and parsimonious prognostic models substantially, and stabilises variable selection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源