论文标题

湍流喷气机的人工智能控制

Artificial intelligence control of a turbulent jet

论文作者

Zhou, Yu, Fan, Dewei, Zhang, Bingfu, Li, Ruiying, Noack, Bernd R.

论文摘要

开发了人工智能(AI)控制系统,以最大化湍流射流的混合速率。该系统包括六个独立操作的不稳定的Minijet执行器,两个放置在喷气机中的热线传感器以及用于无视近距离控制法的基因编程。该法律的ANSATZ包括多频开环强迫,传感器反馈和非线性组合。混合性能通过射流的中心线平均速度的衰减速率来量化。有趣的是,AI控制的学习过程发现了经典的强迫,即可以从传统控制技术中实现的轴对称,螺旋和拍打,以提高性能的顺序一对一,最后收敛到迄今未探索的强迫。仔细检查控制景观揭示了学习过程中产生的典型控制定律及其演变。最好的AI强迫会产生复杂的湍流结构,其特征是定期生成的蘑菇结构,螺旋运动和振荡的喷射柱,都提高了混合速率,并且大大优于其他混合速率。从来没有报道过,这种流程结构在各个方面进行了检查,包括速度光谱,均值和波动的速度场及其下游演化,以及三个正交平面中的流动可视化图像,所有这些都与其他经典流动结构相比。除了了解Minijet生产的流量及其对主射流初始条件的影响,这些方面对这种新发现的流动结构的高效混合背后的物理学产生了宝贵的见解。结果表明,AI在征服许多执行器和传感器的庞大控制法律的机会空间以及优化湍流方面具有巨大的潜力。

An artificial intelligence (AI) control system is developed to maximize the mixing rate of a turbulent jet. This system comprises six independently operated unsteady minijet actuators, two hot-wire sensors placed in the jet, and genetic programming for the unsupervised learning of a near-optimal control law. The ansatz of this law includes multi-frequency open-loop forcing, sensor-feedback and nonlinear combinations thereof. Mixing performance is quantified by the decay rate of the centreline mean velocity of jet. Intriguingly, the learning process of AI control discovers the classical forcings, i.e. axisymmetric, helical and flapping achievable from conventional control techniques, one by one in the order of increased performance, and finally converges to a hitherto unexplored forcing. Careful examination of the control landscape unveils typical control laws, generated in the learning process, and their evolutions. The best AI forcing produces a complex turbulent flow structure that is characterized by periodically generated mushroom structures, helical motion and oscillating jet column, all enhancing the mixing rate and vastly outperforming others. Being never reported before, this flow structure is examined in various aspects, including the velocity spectra, mean and fluctuating velocity fields and their downstream evolution, and flow visualization images in three orthogonal planes, all compared with other classical flow structures. Along with the knowledge of the minijet-produced flow and its effect on the initial condition of the main jet, these aspects cast valuable insight into the physics behind the highly effective mixing of this newly found flow structure. The results point to the great potential of AI in conquering the vast opportunity space of control laws for many actuators and sensors and in optimizing turbulence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源