论文标题

分类器合奏的鲁棒性验证

Robustness Verification for Classifier Ensembles

论文作者

Gross, Dennis, Jansen, Nils, Pérez, Guillermo A., Raaijmakers, Stephan

论文摘要

我们给出了一个正式的验证程序,该程序决定分类器集合是否对任意随机攻击具有鲁棒性。此类攻击包括一组确定性攻击和该集合的分布。稳健性检查问题包括评估一组分类器和标记的数据集,是否存在随机攻击是否会导致对所有分类器产生一定的预期损失。我们显示了该问题的NP硬度,并在攻击的数量上提供了足以形成最佳随机攻击的上限。这些结果提供了一种有效的方法来推理分类器集合的鲁棒性。我们提供SMT和MILP编码以计算最佳的随机攻击或证明没有攻击引起一定的预期损失。在后一种情况下,分类器合奏证明是强大的。我们的原型实现验证了经过培训的图像分类任务的多个神经网络集合。使用MILP编码的实验结果在可伸缩性和我们的验证程序的一般适用性方面都有希望。

We give a formal verification procedure that decides whether a classifier ensemble is robust against arbitrary randomized attacks. Such attacks consist of a set of deterministic attacks and a distribution over this set. The robustness-checking problem consists of assessing, given a set of classifiers and a labelled data set, whether there exists a randomized attack that induces a certain expected loss against all classifiers. We show the NP-hardness of the problem and provide an upper bound on the number of attacks that is sufficient to form an optimal randomized attack. These results provide an effective way to reason about the robustness of a classifier ensemble. We provide SMT and MILP encodings to compute optimal randomized attacks or prove that there is no attack inducing a certain expected loss. In the latter case, the classifier ensemble is provably robust. Our prototype implementation verifies multiple neural-network ensembles trained for image-classification tasks. The experimental results using the MILP encoding are promising both in terms of scalability and the general applicability of our verification procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源