论文标题

双轴旋转培养基中双曲线分散体的磁诱导拓扑过渡

Magnetically induced topological transitions of hyperbolic dispersion in biaxial gyrotropic media

论文作者

Tuz, Vladimir R., Fesenko, Volodymyr I.

论文摘要

研究了通过无界双轴旋转培养基传播的散装波的磁性拓扑跃迁。该培养基是由由磁化铁氧体和半导体层组成的两个组分峰值构建的。为了得出陀螺介质的本构参数,采用了有效培养基理论的均质化程序。该研究是在铁磁共振频率附近的频率范围内进行的,其中磁性子系统具有自然双曲线分散体的特性。对于非凡的波浪,证明了从开放型I倍曲底到几种复杂的双曲线样形式的拓扑过渡。我们揭示了逼真的材料损失如何改变表征双曲线分散体的同源表面的形式。获得的结果扩大了我们对可能出现在受外部静态磁场影响的陀螺介质中的同源表面拓扑的知识。

Magnetically induced topological transitions of isofrequency surfaces of bulk waves propagating through an unbounded biaxial gyrotropic medium are studied. The medium is constructed from a two-component superlattice composed of magnetized ferrite and semiconductor layers. To derive the constitutive parameters of the gyrotropic medium, a homogenization procedure from the effective medium theory is applied. The study is carried out in the frequency range near the frequency of ferromagnetic resonance, where the magnetic subsystem possesses the properties of natural hyperbolic dispersion. The topological transitions from an open type-I hyperboloid to several intricate hyperbolic-like forms are demonstrated for the extraordinary waves. We reveal how realistic material losses change the form of isofrequency surface characterizing hyperbolic dispersion. The obtained results broaden our knowledge on the possible topologies of isofrequency surfaces that can appear in gyrotropic media influenced by an external static magnetic field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源