论文标题

雅典娜++自适应网状精炼框架:设计和磁性水力动力求解器

The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers

论文作者

Stone, James M., Tomida, Kengo, White, Christopher J., Felker, Kyle G.

论文摘要

描述了一种新的自适应网格改进框架(AMR)计算的设计和实施。它主要用于天体物理流体动力学中的应用,但其柔性和模块化设计使其可用于多种物理。该框架在笛卡尔和曲线坐标系中与均匀和非均匀的网格一起使用。它采用了基于简单设计的动态执行模型,称为“任务列表”,该模型通过重叠的通信和计算来改善并行性能,简化了各种物理范围的包含,甚至启用了计算不同区域中涉及不同物理的多物理模型。我们描述了在此框架中为非权利主义和相对论磁性流失动力学(MHD)实施的物理模块。这些模块采用最初为雅典娜MHD代码开发的成熟和健壮的算法,并结合了新的扩展:对曲线坐标,高阶时间积分器,更现实的物理学的支持,例如一般的状态方程,以及可以将其与超级时间稳定algorithm集成的扩散术语。这些模块的性能和缩放表现出色,超过80%的平行效率超过半百万。源代码已公开可用。

The design and implementation of a new framework for adaptive mesh refinement (AMR) calculations is described. It is intended primarily for applications in astrophysical fluid dynamics, but its flexible and modular design enables its use for a wide variety of physics. The framework works with both uniform and nonuniform grids in Cartesian and curvilinear coordinate systems. It adopts a dynamic execution model based on a simple design called a "task list" that improves parallel performance by overlapping communication and computation, simplifies the inclusion of a diverse range of physics, and even enables multiphysics models involving different physics in different regions of the calculation. We describe physics modules implemented in this framework for both non-relativistic and relativistic magnetohydrodynamics (MHD). These modules adopt mature and robust algorithms originally developed for the Athena MHD code and incorporate new extensions: support for curvilinear coordinates, higher-order time integrators, more realistic physics such as a general equation of state, and diffusion terms that can be integrated with super-time-stepping algorithms. The modules show excellent performance and scaling, with well over 80% parallel efficiency on over half a million threads. The source code has been made publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源