论文标题
贝叶斯希尔伯特空间中的迭代投影变化推断,并应用于机器人状态估计
Variational Inference as Iterative Projection in a Bayesian Hilbert Space with Application to Robotic State Estimation
论文作者
论文摘要
变分贝叶斯推断是一个重要的机器学习工具,可以从统计数据到机器人技术找到应用。目的是从所选家族中找到一个近似概率密度函数(PDF),在某种意义上是“最接近”的贝叶斯后部。接近度通常是通过选择适当的损失功能(例如Kullback-Leibler(KL)差异)来定义的。在本文中,我们通过利用(大多数)PDF是贝叶斯希尔伯特空间的成员,在仔细定义矢量添加,标量乘法和内部产品的仔细定义下,探讨了变异推断的新表述。我们表明,在适当的条件下,基于KL差异的变异推断可以等于迭代性投影,从欧几里得意义上讲,贝叶斯后部到对应于所选近似族的子空间上。我们通过此通用框架的细节为高斯近似家族的特定情况进行了努力,并显示了与另一种高斯变异推理方法的等效性。此外,我们讨论了对表现出稀疏性的系统的含义,该系统在贝叶斯空间中自然处理,并给出了一个高维机器人状态估计问题的示例,因此可以解决。我们提供了一些初步示例,说明如何将方法应用于非高斯推论,并详细讨论该方法的局限性,以鼓励沿着这些路线进行跟进。
Variational Bayesian inference is an important machine-learning tool that finds application from statistics to robotics. The goal is to find an approximate probability density function (PDF) from a chosen family that is in some sense 'closest' to the full Bayesian posterior. Closeness is typically defined through the selection of an appropriate loss functional such as the Kullback-Leibler (KL) divergence. In this paper, we explore a new formulation of variational inference by exploiting the fact that (most) PDFs are members of a Bayesian Hilbert space under careful definitions of vector addition, scalar multiplication and an inner product. We show that, under the right conditions, variational inference based on KL divergence can amount to iterative projection, in the Euclidean sense, of the Bayesian posterior onto a subspace corresponding to the selected approximation family. We work through the details of this general framework for the specific case of the Gaussian approximation family and show the equivalence to another Gaussian variational inference approach. We furthermore discuss the implications for systems that exhibit sparsity, which is handled naturally in Bayesian space, and give an example of a high-dimensional robotic state estimation problem that can be handled as a result. We provide some preliminary examples of how the approach could be applied to non-Gaussian inference and discuss the limitations of the approach in detail to encourage follow-on work along these lines.