论文标题

深度学习和贝叶斯深度学习的基于多尺度大脑功能连接性的性别预测

Deep Learning and Bayesian Deep Learning Based Gender Prediction in Multi-Scale Brain Functional Connectivity

论文作者

Zhao, Gengyan, Hwang, Gyujoon, Cook, Cole J., Liu, Fang, Meyerand, Mary E., Birn, Rasmus M.

论文摘要

大脑性别差异很长一段时间以来,是男性和女性之间许多心理,精神病和行为差异的可能原因。从大脑功能连通性(FC)中预测性别可以建立大脑活动与性别之间的关系,并从预测模型中提取重要的性别与性别相关的FC特征提供了一种研究大脑性别差异的方法。应用于性别预测的当前预测模型表明了良好的精度,但通常提取单个功能连接,而不是整个连接矩阵中的连接模式作为特征。此外,当前模型通常会省略输入脑FC量表对预测的影响,并且无法提供任何模型不确定性信息。因此,在这项研究中,我们建议通过深度学习的多个脑FC的性别来预测性别,从而可以提取完整的FC模式作为特征。我们进一步发展了对深神经网络(DNN)中特征提取机制的理解,并提出了一种DNN特征排名方法,以根据其对预测的贡献提取非常重要的特征。此外,我们将贝叶斯深度学习应用于大脑FC性别预测,作为概率模型,这不仅可以做出准确的预测,而且可以为每个预测产生模型不确定性。实验是在高质量的人类连接项目S1200发布数据集上进行的,该数据集包含1003位健康成年人的静止状态功能性MRI数据。首先,DNN分别达到83.0%,87.6%,92.0%,93.5%和94.1%的精度,源自25、50、50、100、200、300个独立组件分析(ICA)组件的FC输入。 DNN的表现优于25-COMPONTER量表FC上常规的机器学习方法,但是随着ICA组件的数量增加,线性机器学习方法会赶上...

Brain gender differences have been known for a long time and are the possible reason for many psychological, psychiatric and behavioral differences between males and females. Predicting genders from brain functional connectivity (FC) can build the relationship between brain activities and gender, and extracting important gender related FC features from the prediction model offers a way to investigate the brain gender difference. Current predictive models applied to gender prediction demonstrate good accuracies, but usually extract individual functional connections instead of connectivity patterns in the whole connectivity matrix as features. In addition, current models often omit the effect of the input brain FC scale on prediction and cannot give any model uncertainty information. Hence, in this study we propose to predict gender from multiple scales of brain FC with deep learning, which can extract full FC patterns as features. We further develop the understanding of the feature extraction mechanism in deep neural network (DNN) and propose a DNN feature ranking method to extract the highly important features based on their contributions to the prediction. Moreover, we apply Bayesian deep learning to the brain FC gender prediction, which as a probabilistic model can not only make accurate predictions but also generate model uncertainty for each prediction. Experiments were done on the high-quality Human Connectome Project S1200 release dataset comprising the resting state functional MRI data of 1003 healthy adults. First, DNN reaches 83.0%, 87.6%, 92.0%, 93.5% and 94.1% accuracies respectively with the FC input derived from 25, 50, 100, 200, 300 independent component analysis (ICA) components. DNN outperforms the conventional machine learning methods on the 25-ICA-component scale FC, but the linear machine learning method catches up as the number of ICA components increases...

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源