论文标题
均匀磁场中手性费米的热力学
Thermodynamics of Chiral Fermion System in a Uniform Magnetic Field
论文作者
论文摘要
我们从Landau水平构造手性费米斯系统的宏伟分区功能,可以通过该水平获得所有热力学量。使用ABEL-PLANA公式,这些热力学数量可以作为串联相对于无量纲变量$ b = 2eb/t^{2} $扩展。我们发现,能量密度,压力,磁化强度和磁化易感性的系列膨胀包含一个具有$ \ ln b^{2} $的单数项,而粒子密度,熵密度和热容量是$ b^{2} $的功率系列。还讨论了这些热力学数量在极端条件下的渐近行为。
We construct the grand partition function of the system of chiral fermions in a uniform magnetic field from Landau levels, through which all thermodynamic quantities can be obtained. Taking use of Abel-Plana formula, these thermodynamic quantities can be expanded as series with respect to a dimensionless variable $b=2eB/T^{2}$. We find that the series expansions of energy density, pressure, magnetization intensity and magnetic susceptibility contain a singular term with $\ln b^{2}$, while particle number density, entropy density and heat capacity are power series of $b^{2}$. The asymptotic behaviors of these thermodynamic quantities in extreme conditions are also discussed.