论文标题

钻孔电阻率测量的深度学习反转的误差控制和损失功能

Error Control and Loss Functions for the Deep Learning Inversion of Borehole Resistivity Measurements

论文作者

Shahriari, M., Pardo, D., Rivera, J. A., Torres-Verdín, C., Picon, A., Del Ser, J., Ossandón, S., Calo, V. M.

论文摘要

深度学习(DL)是近似函数的数值方法。最近,它的使用对计算力学中多个问题的模拟和反转已变得有吸引力,包括对石油和天然气应用的钻孔记录测量值的反转。在这种情况下,DL方法具有两个关键的吸引力:a)训练后,它们可以在一秒钟的一小部分中解决一个反问题,这对于钻孔的GeoSteering操作以及在其他实时反转应用中都很方便。 b)DL方法具有较高的能力,可以近似不同知识领域的高度复杂功能。然而,由于大多数数值方法发生,DL还依赖于特定问题的专家设计决策,以实现可靠且可靠的结果。在此,我们研究了深神经网络(DNN)的两个关键方面时,将其应用于钻孔电阻率测量的反转:误差控制和足够的损耗函数选择。正如我们通过理论考虑和广泛的数值实验所说明的那样,这些相互关联的方面对于恢复准确的反转结果至关重要。

Deep learning (DL) is a numerical method that approximates functions. Recently, its use has become attractive for the simulation and inversion of multiple problems in computational mechanics, including the inversion of borehole logging measurements for oil and gas applications. In this context, DL methods exhibit two key attractive features: a) once trained, they enable to solve an inverse problem in a fraction of a second, which is convenient for borehole geosteering operations as well as in other real-time inversion applications. b) DL methods exhibit a superior capability for approximating highly-complex functions across different areas of knowledge. Nevertheless, as it occurs with most numerical methods, DL also relies on expert design decisions that are problem specific to achieve reliable and robust results. Herein, we investigate two key aspects of deep neural networks (DNNs) when applied to the inversion of borehole resistivity measurements: error control and adequate selection of the loss function. As we illustrate via theoretical considerations and extensive numerical experiments, these interrelated aspects are critical to recover accurate inversion results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源