论文标题

在真正的戴维斯的猜想上

On the real Davies' conjecture

论文作者

Jain, Vishesh, Sah, Ashwin, Sawhney, Mehtaab

论文摘要

我们表明,每个矩阵$ a \ in \ mathbb {r}^{n \ times n} $至少是$δ$δ$ the \ | a \ | $ -close到一个真实矩阵$ a+e \ in \ in \ in \ mathbb {r} $ \ tilde {o} _ {n}(δ^{ - 1})$。实际上,我们证明,有可能以$ e $的范围成为I.I.D.的足够倍数。界密度的实际下高斯矩阵就足够了。这实质上证实了戴维斯和银行,库尔卡尼,穆克吉和斯里瓦斯塔瓦的猜测,他们最近证明了I.I.D.的结果。复杂的高斯矩阵。 一路上,我们还证明了对随机矩阵的任何两个特征值之间的最小可能距离,其条目具有任意均值;我们论文的这一部分可能具有独立的利益。

We show that every matrix $A \in \mathbb{R}^{n\times n}$ is at least $δ$$\|A\|$-close to a real matrix $A+E \in \mathbb{R}^{n\times n}$ whose eigenvectors have condition number at most $\tilde{O}_{n}(δ^{-1})$. In fact, we prove that, with high probability, taking $E$ to be a sufficiently small multiple of an i.i.d. real sub-Gaussian matrix of bounded density suffices. This essentially confirms a speculation of Davies, and of Banks, Kulkarni, Mukherjee, and Srivastava, who recently proved such a result for i.i.d. complex Gaussian matrices. Along the way, we also prove non-asymptotic estimates on the minimum possible distance between any two eigenvalues of a random matrix whose entries have arbitrary means; this part of our paper may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源