论文标题

复制的非组织时间序列的多尺度建模

Multiscale modelling of replicated nonstationary time series

论文作者

Embleton, Jonathan, Knight, Marina I., Ombao, Hernando

论文摘要

在神经科学中,在基础大脑过程的动力学中观察到跨时间的可变性既不是新的也不是出乎意料的。小波对于分析大脑信号至关重要,因为即使在一次试验中,大脑信号也会表现出非平稳性行为。但是,实验中产生的神经信号也可能在试验中可能表现出进化(重复)。由于神经科医生认为脑信号的局部光谱是最有用的,因此我们在这里开发了一种基于小波的新工具,能够正式表示时间上的过程非组织性并复制维度。具体而言,我们提出了重复的本地固定小波(RLSW)过程,该过程捕获了试验内和整个试验内的潜在非平稳行为。使用小波的估计可以对过程动力学进行自然所需的时间和重复定位。我们开发相关的光谱估计框架并建立其渐近性能。通过彻底的模拟研究,我们证明了理论估计量在实践中的特性。对关联学习实验期间海马和伏隔核的进化动力学的真实数据研究证明了我们提出的方法的适用性以及它提供的新见解。

Within the neurosciences, to observe variability across time in the dynamics of an underlying brain process is neither new nor unexpected. Wavelets are essential in analyzing brain signals because, even within a single trial, brain signals exhibit nonstationary behaviour. However, neurological signals generated within an experiment may also potentially exhibit evolution across trials (replicates). As neurologists consider localised spectra of brain signals to be most informative, here we develop a novel wavelet-based tool capable to formally represent process nonstationarities across both time and replicate dimensions. Specifically, we propose the Replicate Locally Stationary Wavelet (RLSW) process, that captures the potential nonstationary behaviour within and across trials. Estimation using wavelets gives a natural desired time- and replicate-localisation of the process dynamics. We develop the associated spectral estimation framework and establish its asymptotic properties. By means of thorough simulation studies, we demonstrate the theoretical estimator properties hold in practice. A real data investigation into the evolutionary dynamics of the hippocampus and nucleus accumbens during an associative learning experiment, demonstrate the applicability of our proposed methodology, as well as the new insights it provides.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源