论文标题

二阶总广义变化约束的反问题

Inverse problems with second-order Total Generalized Variation constraints

论文作者

Bredies, Kristian, Valkonen, Tuomo

论文摘要

最近,已将总体广义变异(TGV)作为惩罚功能引入,用于建模具有边缘和平滑变化的图像。可以将其解释为从第一个到$ k $ th的分销衍生品的最佳平衡的“稀疏”惩罚,并在应用于图像denoising时会带来理想的结果,即带有tgv罚款的$ l^2 $。目前的论文研究了二阶的TGV在解决不适合线性反问题的背景下。显示了关于数据的Tikhonov功能最小化解决方案的存在和稳定性,并将其应用于从模糊和嘈杂数据中恢复图像的问题。

Total Generalized Variation (TGV) has recently been introduced as penalty functional for modelling images with edges as well as smooth variations. It can be interpreted as a "sparse" penalization of optimal balancing from the first up to the $k$-th distributional derivative and leads to desirable results when applied to image denoising, i.e., $L^2$-fitting with TGV penalty. The present paper studies TGV of second order in the context of solving ill-posed linear inverse problems. Existence and stability for solutions of Tikhonov-functional minimization with respect to the data is shown and applied to the problem of recovering an image from blurred and noisy data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源