论文标题
Einstein-Weyl几何背景上的无分散整合系统和Bogomolny方程
Dispersionless integrable systems and the Bogomolny equations on an Einstein-Weyl geometry background
论文作者
论文摘要
我们得出了一个无散的集成系统,描述了带有欧几里得(正)签名的一般三维爱因斯坦 - 韦尔几何形式的局部形式,构建其矩阵扩展,并证明它会导致在Einstein-Weyl几何形式背景上的非阿布莱恩单台的Bogomolny方程。还考虑了相应的无分散整合层次结构,其矩阵扩展和调料方案。
We derive a dispersionless integrable system describing a local form of a general three-dimensional Einstein-Weyl geometry with an Euclidean (positive) signature, construct its matrix extension and demonstrate that it leads to the Bogomolny equations for a non-abelian monopole on an Einstein-Weyl geometry background. The corresponding dispersionless integrable hierarchy, its matrix extension and the dressing scheme are also considered.