论文标题
研究Legend-1000的基于ASIC的信号读数电子设备
Investigation of ASIC-based signal readout electronics for LEGEND-1000
论文作者
论文摘要
Legend是中性元$β$衰减的大型富集锗实验,是一个量表实验计划,旨在在同位素$^{76} $ ge中搜索具有前所未有的敏感性的中微子双β($0νβ.)衰减。在低下背景$^{76} $ ge基于GERDA和Majorana演示器实验的基础上,传奇合作的目标是针对信号发现敏感性,超过$ 10^{28} \,$ yr,$ yr,$ yr,$ 10 \,$ 10 \,$ 10 \,\ cd text {t} \ cdot {t} \ cdot \ cdot \ cdot \ text $ expluse。信号读数电子设备与探测器紧密相邻,在通过降低电子噪声和提高脉冲形状分析能力以拒绝背景的能力来最大化实验的发现敏感性方面起着重要作用。但是,该邻近性也对电子产品的放射性构成了独特的挑战。应用特定的集成电路(ASIC)技术允许将整个电荷敏感放大器(CSA)实施到单个低质量芯片中,同时改善电子噪声并减少功耗。在这项工作中,我们研究了XGLAB立方体前置放大器的市售ASIC CSA的性质和电子性能,以及P型点接触高纯晶也检测器。我们表明,通过此读数,可以获得低噪声水平和出色的能量分辨率。此外,我们证明了脉冲形状歧视技术的生存能力,以减少背景事件。
LEGEND, the Large Enriched Germanium Experiment for Neutrinoless $ββ$ Decay, is a ton-scale experimental program to search for neutrinoless double beta ($0νββ$) decay in the isotope $^{76}$Ge with an unprecedented sensitivity. Building on the success of the low-background $^{76}$Ge-based GERDA and MAJORANA DEMONSTRATOR experiments, the LEGEND collaboration is targeting a signal discovery sensitivity beyond $10^{28}\,$yr on the decay half-life with approximately $10\,\text{t}\cdot\text{yr}$ of exposure. Signal readout electronics in close proximity to the detectors plays a major role in maximizing the experiment's discovery sensitivity by reducing electronic noise and improving pulse shape analysis capabilities for the rejection of backgrounds. However, the proximity also poses unique challenges for the radiopurity of the electronics. Application-specific integrated circuit (ASIC) technology allows the implementation of the entire charge sensitive amplifier (CSA) into a single low-mass chip while improving the electronic noise and reducing the power consumption. In this work, we investigated the properties and electronic performance of a commercially available ASIC CSA, the XGLab CUBE preamplifier, together with a p-type point contact high-purity germanium detector. We show that low noise levels and excellent energy resolutions can be obtained with this readout. Moreover, we demonstrate the viability of pulse shape discrimination techniques for reducing background events.